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The major objective of this work is to describe the dynamic thermal behavior of
thermoelectric generators and refrigerators under the effect of the hyperbolic
heat conduction model. In practical situations, these devices work under tran-
sient operating conditions due to the time change in the imposed current,
voltage, and hot or cold temperatures. Results for transient temperature distri-
butions were obtained for different parameters. The coefficient of performance
was obtained as a function of time for increasing current flow.

KEY WORDS: dynamic behavior of heat pump; electrical generator and
regenerator; hyperbolic heat conduction model; thermoelectric system.

1. INTRODUCTION

The basic theory of thermoelectric generators and refrigerators was derived
satisfactorily in 1909 and 1911 by Altenkrich [1, 2]. His work indicated
that for both applications materials were needed with high Seebeck coeffi-
cients to minimize Joule heating and low thermal conductivities to reduce
heat transfer through the devices. Altenkirch [1, 2] enumerated the desir-
able properties for materials to be used in thermoelectric devices. In the
literature, numerous studies have been conducted to investigate the thermal
behavior of thermoelectric devices under steady-state conditions [3–11].
However, the behavior of these devices under transient operating condi-
tions has not yet been investigated.

A study of the transient thermal behavior of the thermoelectric device
rather than the steady-state behavior is very important for two reasons:



(a) to investigate the device behavior during the start-up and shut-down
periods and (b) to understand the device thermal behavior when all or
some of the operating conditions are varied with time. Examples of these
operating conditions are the cold temperature, hot temperature, and the
imposed electric field.

The thermoelectric transient behavior is investigated here using the
hyperbolic heat conduction model. This model is more general than the
parabolic (diffusion) heat conduction model. The parabolic diffusion model
is considered as a special case of the hyperbolic model. The use of the
hyperbolic model is essential in applications that involve imposed currents
for very short durations and in applications that involve very thin p-type
and n-type thermoelectric arrays. In addition, the hyperbolic model must
be used when there are large temperature gradients within the device. Also,
the hyperbolic model is important in order to understand the device
behavior at very short times.

The major objective of this work is to describe the dynamic thermal
behavior of thermoelectric generators and refrigerators. In practical situa-
tions, these devices work under transient operating conditions due to the
transient behavior of the imposed current, voltage, and hot or cold tem-
peratures.

2. ANALYSIS

Figure 1 is a schematic of a thermoelectric heat pump or refrigerator
and involves a thermocouple composed of n- and p-type semiconductor
elements placed electrically in series and thermally in parallel. When an
electrical current I flows through the circuit, the rates of heat rejection and
input for operation between two reservoirs at Tb and Tc are Qh and Qc,
respectively. When the device is used as a heat pump, the reservoir at Th is
the heated space and the rate of heat pumping is Qh. When the device is
used as a refrigerator, the reservoir at Tc is the cooled space and the rate of
refrigeration is Qc. T1 and T2 are the temperatures inside the n- and p-type
elements, respectively, and are functions of position x. E is the emf of the
external battery and provides the current I to the circuit. Operation is
based on the Peltier effect. At the same time, there are three additional
effects [12, 13], namely, the Fourier, Joule, and Thomson effects.

It is assumed that the construction of the semiconductors is homoge-
neous; k and s are constants. The lengths, uniform cross-sectional areas,
thermal conductivities, electrical conductivities, Seebeck coefficients, and
Thomson coefficients of n- (subscript 1) and p-type (subscript 2) elements
are, respectively, L1 and L2, A1 and A2, k1 and k2, s1 and s2, a1 and a2, and
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Fig. 1. Schematic of a thermoelectric heat pump
or refrigerator.

c1 and c2. The elements are insulated, both electrically and thermally, from
their surroundings except at the junction-reservoir contacts [14–17], and
the temperature distribution inside the elements may be described by a one-
dimensional heat-conduction model. Initially, both domains of the n- and
p-type semiconductors are maintained at a uniform initial temperature Ti,
and suddenly, a constant current I flows into the circuit as shown in Fig. 1.
The energy equation under the hyperbolic heat conduction model that
describes the thermal behaviour of the system is given as [3]

rc
“T
“t

+
“q
“x

+eJN
“f

“x
=0 (1)

where

q(t+ȳ)=−k
“T
“x

+TeeJN (2)

The Taylor expansion of Eq. (2) for q(t+ȳ) gives

q(t+ȳ) % q(t)+ȳ
“q(t)

“t
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Then Eq. (2) becomes:

q+ȳ
“q
“t

=−k
“T
“x

+TeeJN (3)

but

“f

“x
=−

eJN

ke
− e

“T
“x

(4)

where ke is the electrical conductivity. Now Eq. (3) is derived with respect
to x:

“q
“x

+ȳ
“

2q
“t “x

=−
“

“x
1k

“T
“x

2+
“

“x
(TeeJN) (5)

From Eq. (1),

“q
“x

=−rc
“T
“t

− eJN
“f

“x

Substitution of “q
“x in Eq. (5) yields

− rc
“T
“t

− eJN
“f

“x
− ȳrc

“
2T

“t2 − ȳe
“

“t
1JN

“f

“x
2=−

“

“x
1k

“T
“x

2+
“

“x
(TeeJN)

(6)

Substitution for “f

“x from Eq. (4), with the notation that “

“x (TeeJN)=eeJN
“T
“x+

(TeJN) “e

“x , where JN=JN(t) only, gives

− rc
“T
“t

+
e2J2

N

ke
− ȳrc

“
2T

“t2 +ȳ
“

“t
5e2J2

N

ke
+eeJN

“T
“x
6

=−
“

“x
1k

“T
“x

2+TeJN
“e

“x
(7)

but I (current in amperes)=eJNA, where A is the cross-sectional area. Also,
T “e

“x=T “e

“T
“T
“x=c “T

“x , where c=T “e

“T is the Thomson coefficient. Equation (7)
becomes

“

“x
1kA

“T
“x

2 + cI
“T
“x

+
I2

RL
− rcA

“T
“t

− ȳrcA
“

2T
“t2 +ȳ

“

“t
5 I2

RL
+ eI

“T
“x
6=0

(8)
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where R=Ake
L is the electric resistance and L is the domain length. The

transient heat conduction equation inside the n- and p-type semiconductors
is given by

“

“x
1kiA i

“Ti

“x
2 + ci I

“Ti

“x
+

I2

R iL i
− riciA i

“Ti

“t
− ȳiriciA i

“
2Ti

“t2

+ȳi
“

“t
5 I2

R iL i
+ eiI

“Ti

“x
6=0 (9)

where i=1 for the n-type semiconductor and i=2 for the p-type. Also, the
plus sign is for the n-type and the minus sign is for the p-type. Equation (9)
assumes the following initial and boundary conditions:

T1(0, x)=T2(0, x)=Ti

“T1

“t
(0, x)=

“T2

“t
(0, x)=0

T1(t, 0)=T2(t, 0)=Tc

T1(t, L1)=T2(t, L2)=Th

(10)

The transient behavior of the device is due to a suddenly imposed electric
current. Initially, there is no electric current flowing within the device and
the device temperature is equal to the ambient value. Suddenly, a constant
electric current, in the form of a unit step function, is imposed on the
system and one end is maintained at the cold temperature and the other is
maintained at the hot temperature. As a result, the temperatures within the
n-type and p-type domains, and the heating and cooling effects of the
device, will be time dependent.

The thermoelectric device may be considered as a heat pump or
refrigerator. When the device is used as a heat pump, the reservoir at Th is
the heated space and the rate of heat pumping is Qh. When the device is
used as a refrigerator, the reservoir at Tc is the cooled space and the rate of
refrigeration is Qc. The given governing equations apply for both cases, but
the definition of the coefficient of performance differs between the two
cases.

Equations (9) and (10) can be solved to determine the temperature
distribution within each domain. In terms of the obtained temperature
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distributions, one may define both heating and cooling effects of the
thermoelectric device as

qc=(ec
2 − ec

1) TcI − k1A1
“T1

“x
(t, 0) − k2A2

“T2

“x
(t, 0) (11)

qh=(eh
2 − eh

1) ThI − k1A1
“T1

“x
(t, L1) − k2A2

“T2

“x
(t, L2) (12)

and the coefficient of performance (COP) is defined as

Y(t)=
qh

qh − qc
(13a)

For the case where the device is considered as a refrigerator, then the COP
will be

Y(t)=
qc

qh − qc
(13b)

Now, using the dimensionless parameters defined in the Nomenclature,
Eqs. (9) to (13a) are rewritten as

“
2h1

“t2 +F1
“h1

“t
+F2 −

“h1

“g
− y1

“
2h1

“g2 +y1
“

“g
5F2 −

e1

c1
F1

“h1

“t
6=0 (14)

aR
“

2h2

“t2 − E1
“h2

“t
+E2 −

“h2

“g
− y2

“
2h2

“g2 +y2
“

“g
5E2+

e2

c2
E1

“h2

“t
6=0 (15)

h1(0, t)=h2(0, t)=0

“h1

“g
(0, t)=

“h2

“g
(0, t)=0

(16)

h1(g, 0)=h2(g, 0)=1

h1(g, 1)=h2(g, LR)=r

Qc=M −
“h1

“t
(g, 0) − kRAR

“h2

“t
(g, 0) (17)

Qh=N −
“h1

“t
(g, 1) − kRAR

“h2

“t
(g, LR) (18)
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and

Y=
Qh

Qh − Qc
(19)

where

F1=
Ic1L1

A1k1
, F2=

I2L1

R1(Tc − Ti) A1k1
,

E1=
Ic2L1

CRA2k1
, E2=

I2L2
1

CRL2R2(Tc − Ti) A2k1
,

aR=
a2

a1
, CR=

r2c2

r1c1
, kR=

k2

k1
,

AR=
A2

A1
, LR=

L2

L1
, r=

Th − Ti

Tc − Ti

M=(ec
2 − ec

1)
TcIL1

k1A1(Tc − Ti)

N=(eh
2 − eh

1)
ThIL1

k1A1(Th − Ti)

(20)

The parameter M represents the dimensionless form of the energy
released (or absorbed) at the cold junction due to the Peltier effect. On the
other hand, the parameter N represents the dimensionless form of the
energy released (or absorbed) at the hot junction due to the Peltier effect.
The energy is released at the junction if the device operates as a heating
pump, and the energy is absorbed at the junction if the device operates as a
refrigerator. In general, Qc (or Qh) contains energy released (or absorbed)
from three sources: the first due to the Peltier effect, the second due to the
conducted energy to the first domain, and the third due to the conducted
energy to the second domain.

Now, using the Laplace transform technique, and with the notation
that L{h(g, t)}=W(s, t), Eqs. (14) to (16) are transformed to

W1(s, t)=P11el11t+P12el12t+
F2

s(y1s2+s)

W1(0)=1, W1(1)=r

(21)

W2(s, t)=P21el21t+P22el22t+
E2

s(y2s2+s)
W2(0)=1, W2(LR)=r

(22)
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where

l11=1
2 [ − A1+`A2

1 − 4B1], l12=1
2 [ − A1 − `A2

1 − 4B1 ],

l21=1
2 [ − A2+`A2

2 − 4B2 ], l22=1
2 [ − A2 − `A2

2 − 4B2]

P11=
r − el12 11 −

F2

s2
2−

F2

s2

el11 − el12
, P12=1 −

F2

s2 − P11

P21=
r − el22LR 11 −

E2

s2
2−

E2

s2

el21LR − el22LR
, P22=1 −

E2

s2 − P21

A1=11 − y1
e1

c1
s2 F1, B1=−(y1s2+s)

A2=1y2e2

c2 s − 12 E1

aR
, B2=−

(y2s2+s)
aR

Equations (21) and (22) are inverted in terms of the Riemann-sum
approximation [18] as

F(g, z)=
ect

m
51

2
F̄(y, z)+Re C

N

n=1
F̄ 1y+

inp

m
, z2 (−1)n6 (23)

where F̄(y, z) is the Laplace transform of F(g, z).
For faster convergence of Eq. (23), it has been shown [18] that c may

be obtained from

yz=4.7

Expressions for h1 and h2 are obtained directly from Eqs. (20) and (21),
respectively.

3. RESULTS AND CONCLUSION

The figures show the transient behavior of the thermoelectric genera-
tor or refrigerator. Data were obtained for the following parameters:

c1=e1=10 − 4, LR =k1=R=aR=1, E1=0.625, F1=0.313, M=0.8

c2=e2=2 × 10 − 4, r=1.1, E2=F2=100, N=1.0

y1=y2=10 − 4
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Figure 2 shows the transient temperatures distribution (h1 and h2) at dif-
ferent axial locations. Figure 2a is for y=10 − 4, and Fig. 2b is for y=10 − 3.
For the parameters selected in the analysis, both figures show no variation
between h1 and h2. Also, both figures show that the rate of temperature
increase is very high near the boundaries where it reaches maximum values
in shorter times and continues to decrease but at a slower rate. However,
this rate decreases when moving towards the center (t Q 0.5). As time pro-
ceeds, steady-state temperatures are achieved. Steady-state time increases
when going from the boundaries towards the center since heat takes longer
times to reach the center. Although the time required reaching steady-state
behavior is relatively small, the effect of the short duration in transient
behavior is of significant impact in applications involving fluctuating elec-
trical current and a time-dependent electrical source, plus applications in
control systems where a sudden change in current flow occurs. Compari-
sons of these figures show that an increase in y gives higher temperature
values at corresponding times. However, peak-temperature times and the
times to reach steady state increase as y increases. This is shown clearly in
Fig. 2c for t=0.3.

In Fig. 2, various peaks in the temperature transient behavior are due
to the hyperbolic oscillatory behavior of the heat conduction model used
here. The hyperbolic heat conduction model assumes that heat travels
within the domain in the form of thermal waves that have finite speed.
These thermal waves interfere in a constructive or destructive manner, and
as a result, thermal waves travel within the domain with wavefronts. These
traveling thermal waves make the appearance of such peaks possible. These
peaks appear at certain locations at a given time and at other locations
at other times. Also, the appearance of high temperature gradients within
n- and p-type domains is a result of using the hyperbolic heat conduction
model.

In Fig. 3, the axial temperature variation is plotted at different times
for y=10 − 4. It is worth mentioning here that h1 and h2 temperatures are
symmetric about t=0.5, but in reverse directions and again no difference
is observed between them for the selected parameters.

Figures 4 and 5 show the effects of F1 and F2, respectively, on the
transient temperature behavior at t=0.3. As expected from Eqs. (14)
and (15), these parameters only affect the h1 temperature distribution while
having no effect on the h2 temperature distribution. Figure 4 shows that an
increase in F1 by increasing the Thomson coefficient, for example, produces
lower h1 temperature values. This result shows that there is an adverse
influence of the Thomson effect on the rate of heat pumping. However,
Fig. 5 shows that an increase in F2 by increasing the electrical conductivity
or decreasing the electrical resistance R produces higher h1 temperature
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Fig. 2. (a) Transient temperature behavior at different locations for y=10 − 4;
(b) transient temperature behavior at different locations for y=10 − 3; (c) transient
temperature behavior for different t values at t=0.3.
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Fig. 5. Effect of F2 on the transient temperature distribution at t=0.3.

values. This is a direct consequence since an increase in electrical conduc-
tivity enhances thermal transport. Also, it can be seen that the n-type
temperature h1 values are lower than the p-type temperature h2 values, as
expected.

Similar results were obtained for the effect of E1 and E2 on the tran-
sient temperature behavior at t=0.3 in Figs. 6 and 7, respectively. These
parameters only affected the h2 temperature distribution while having no
effect on the h1 temperature distribution, as can be seen from Eqs. (14)
and (15). The same conclusions drawn for Figs. 4 and 5 apply for Figs. 6
and 7.

However, the behavior in Figs. 4 and 6 is different than that in Figs. 5
and 7. It is clear from Eqs. (14) and (15), and at large times, the governing
equations become

“
2h1

“t2 +F1
“h1

“t
+F2 −

“h1

“g
=0, aR

“
2h2

“t2 − E1
“h2

“t
+E2 −

“h2

“g
=0

Now, for most practical applications, F2 and E2 are much larger than
F1 and E1 (E1=0.625, F1=0.313, E2=F2=100), and as a result, the
governing equations become

“
2h1

“t2 +F2 −
“h1

“g
=0, aR

“
2h2

“t2 +E2 −
“h2

“g
=0
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Fig. 6. Effect of E1 on the transient temperature distribution at t=0.3.
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In Figs. 4 and 6 the results are estimated with the assumption that
F2=E2=100 and aR=1. As a result, both Eqs. (14) and (15) are the same
at large values of time.

On the other hand, Figs. 5 and 7 are estimated at different values of
F2 and E2, and this explains why the temperature of the first domain does
not approach that of the second domain as time proceeds. However, and as
clear from these two figures, the two temperatures approach each other as
F2 approaches E2 or as E2 approaches F2.

In Figs. 8 and 9 the transient behavior of the coefficient of perfor-
mance Y is shown for different N and M values, respectively. The increase
in N or M values can be due to the increase in current flow I as can be
seen from Eq. (20). In both figures, an increase in the current flow has
negligible effect on Y at short times where the increase in the rate of Y is
large. As time proceeds, Y starts to decrease until it reaches a steady-state
value. The steady-state Y value increases with an increase in current flow I.

NOMENCLATURE
AR Area ratio A2/A1

A Cross-sectional area
c Specific heat capacity
C Total heat capacity, rc
CR Total heat capacity ratio, C2/C1

e Electronic charge
I Electric current
JN Current density
k Thermal conductivity
ke Electrical conductivity
kR Thermal conductivity ratio, k2/k1

L Length
LR Length ratio, L2/L1

qc Cooling effect of the device
qh Heating effect of the device

Qc Dimensionless cooling effect,
qcL1

k1A1(Tc − T.)

Qh Dimensionless heating effect,
qcL1

k1A1(Tc − T.)

r Temperature ratio,
(Th − T.)
(Tc − T.)

R Electric resistance,
Ake

L
t Time
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T Temperature
Tc Cold junction temperature
Th Hot junction temperature
Ti Initial temperature
x Spatial coordinate

Greek Symbols

a Thermal diffusivity
aR Thermal diffusivity ratio, a1/a2

e Seebeck coefficient
c Thomson Coefficient

g Dimensionless time,
a1t
L2

1

h Dimensionless temperature,
(T − T.)
(Tc − T.)

r Density
ȳ Thermal relaxation time
f Electrostatic potential

t Dimensionless spatial coordinate,
x

L1

k Coefficient of performance,
qh

(qh − qc)
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